$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation}
\mbox{Note that}\quad
\int_{0}^{\infty}{\sin\pars{\alpha x} \over \sinh\pars{\pi x}}\,\dd x =
{1 \over \pi}\int_{0}^{\infty}{\sin\pars{\nu x} \over \sinh\pars{x}}
\,\dd x\,,\qquad\nu \equiv {\alpha \over \pi}\label{1}\tag{1}
\end{equation}
Then,
\begin{align}
\int_{0}^{\infty}{\sin\pars{\nu x} \over \sinh\pars{x}}\,\dd x & =
\Im\int_{0}^{\infty}{\expo{\ic\nu x} - 1 \over \pars{\expo{x} - \expo{-x}}/2}
\,\dd x =
2\,\Im\int_{0}^{\infty}{\expo{-\pars{1 - \ic\nu}x} - \expo{-x} \over
1 - \expo{-2x}}\,\dd x
\\[5mm] &
\stackrel{t\ =\ \expo{{\large -2x}}}{=}\,\,\,
2\,\Im\int_{1}^{0}{t^{\pars{1 - \ic\nu}/2} - t^{1/2} \over
1 - t}\,\pars{-\,{1 \over 2t}}\,\dd t =
\Im\int_{0}^{1}{t^{\pars{-1 - \ic\nu}/2} - t^{-1/2} \over 1 - t}\,\dd t
\\[5mm] & =
-\,\Im\int_{0}^{1}{1 - t^{\pars{-1 - \ic\nu}/2} \over 1 - t}\,\dd t
\\[5mm] & =
-\,{1 \over 2\ic}\bracks{\Psi\pars{{1 \over 2} - {\nu \over 2}\,\ic} -
\Psi\pars{{1 \over 2} + {\nu \over 2}\,\ic}}
\qquad\pars{~\Psi:\ Digamma\ Function~}
\\[5mm] & =
-\,{1 \over 2\ic}
\braces{\pi\cot\pars{\pi\bracks{{1 \over 2} + {\nu \over 2}\,\ic}}}
\qquad\pars{~Euler\ Reflection\ Formula~}
\\[5mm] & =
{\pi \over 2\ic}\tan\pars{{\pi\nu \over 2}\,\ic} =
{\pi \over 2}\tanh\pars{\pi\nu \over 2}
\end{align}
With \eqref{1}:
$$
\bbx{\int_{0}^{\infty}{\sin\pars{\alpha x} \over \sinh\pars{\pi x}}\,\dd x =
{1 \over 2}\,\tanh\pars{\alpha \over 2}}
$$