Prove $x+\sin\sqrt{x}$ is uniformly continuous on $[0,\infty)$. Here's is my proof, but I'm worried of me $\delta$ choice being incorrect.
If $x_1,x_2>0$ then $$|f(x_1)-f(x_2)|=|x_1+\sin\sqrt{x_1}-x_2-\sin\sqrt{x_2}|$$
Since $-1\le\sin x\le1$:
$$|x_1+\sin\sqrt{x_1}-x_2-\sin\sqrt{x_2}|\le|x_1+1-x_2-(-1)|=|x_1-x_2+2|=|x_1-x_2|+2$$
Then let $\delta=\epsilon-2$ so that-
$\forall x_1,x_2 |x_1-x_2|<\delta => |f(x_1)-f(x_2)|\le|x_1-x_2|+2<\epsilon-2+2=\epsilon$
End of proof.
My problem is that my $delta$ is $\delta=\epsilon-2$, but $\delta$ is positive, so there is no $\delta$ for $\epsilon=1$ because then $\delta$ will be negative. So is my solution wrong and if so what the error?
Thanks!