2

Prove $x+\sin\sqrt{x}$ is uniformly continuous on $[0,\infty)$. Here's is my proof, but I'm worried of me $\delta$ choice being incorrect.

If $x_1,x_2>0$ then $$|f(x_1)-f(x_2)|=|x_1+\sin\sqrt{x_1}-x_2-\sin\sqrt{x_2}|$$

Since $-1\le\sin x\le1$:

$$|x_1+\sin\sqrt{x_1}-x_2-\sin\sqrt{x_2}|\le|x_1+1-x_2-(-1)|=|x_1-x_2+2|=|x_1-x_2|+2$$

Then let $\delta=\epsilon-2$ so that-

$\forall x_1,x_2 |x_1-x_2|<\delta => |f(x_1)-f(x_2)|\le|x_1-x_2|+2<\epsilon-2+2=\epsilon$

End of proof.

My problem is that my $delta$ is $\delta=\epsilon-2$, but $\delta$ is positive, so there is no $\delta$ for $\epsilon=1$ because then $\delta$ will be negative. So is my solution wrong and if so what the error?

Thanks!

Harold
  • 731

1 Answers1

3

Yes, $\delta$ has to be positive here; your solution is wrong precisely because yours isn't.

If you can't use the facts mentioned in my comment above, the following outline may be used to show your result:

$\ \ \ $1) Show that the functions $h(x)=\sqrt x$ and $g(x)=\sin x$ are uniformly continuous on $[0,\infty)$.

$\ \ \ $2) Let $\epsilon>0$.

$\ \ \ $3) Choose a $0<\delta_1$ so that $|\sin x_1-\sin x_2|<\epsilon/2$ whenever $|x_1-x_2|<\delta_1$.

$\ \ \ $4) Choose $0<\delta_2$ so that $|\sqrt x_1-\sqrt x_2|<\delta_1$, whenever $|x_1-x_2|<\delta_2$.

$\ \ \ $5) Set $\delta=\min\{\epsilon/2,\delta_2\}$.

$\ \ \ $6) Suppose $|x_1-x_2|<\delta$ and consider the inequality $$|f(x_1)-f(x_2)|\le |x_1- x_2|+| \sin \sqrt x_1-\sin \sqrt x_2|.$$

David Mitra
  • 76,313