This is just a partial answer.
Since I faced this specific problem a few years ago for $W_0(x)$, what I found as "best" are Padé approximants.
The simplest ones are
For $\color{red}{-\frac 1e \leq x \leq -\frac 1{2e}}$
$$W_0(x) \approx \frac{-1+\frac{14\sqrt{2}}{45} \sqrt{e x+1}+\frac{301}{540} (e x+1)}{1+\frac{31\sqrt{2}}{45} \sqrt{e x+1}+\frac{83}{540}
(e x+1)}\tag 1$$
For $\color{red}{-\frac 1{2e} \leq x \leq 0}$
$$W_0(x) \approx \frac{x+\frac{4 }{3}x^2}{1+\frac{7 }{3}x+\frac{5 }{6}x^2}\tag 2$$
For sure, for more accuracy, I built similar expressions with more terms.
Edit
For the other branch, you can use
$$W_{-1}(x)=L_1-L_2+\frac{L_2}{L_1}+\frac{L_2(-2+L_2)}{2L_1^2}+\frac{L_2(6-9L_2+2L_2^2)}{6L_1^3}+\frac{L_2(-12+36L_2-22L_2^2+3L_2^3)}{12L_1^4}+\frac{L_2(60-300L_2+350L_2^2-125 L_2^3+12 L_2^4)}{60L_1^5}+\cdots$$ where $L_1=\log(-x)$ and $L_2=\log(-L1)$
Update
Calling $f(x)$ and $g(x)$ the expressions given in $(1)$ and $(2)$, let us consider the error function
$$\Phi(a)=\int_{-\frac 1 e}^a \left(W(x)-f(x)\right)^2+\int^0_a \left(W(x)-g(x)\right)^2$$ and get the following values
$$\left(
\begin{array}{cc}
a & 10 ^{10} \,\Phi(a) \\
-0.350 & 472433 \\
-0.325 & 72500 \\
-0.300 & 13455 \\
-0.275 & 2646 \\
-0.250 & 523 \\
-0.225 & 109 \\
\color{red}{ -0.200} &\color{red}{ 44} \\
-0.175 & 57 \\
-0.150 & 100 \\
-0.125 & 168 \\
-0.100 & 269 \\
-0.075 & 411 \\
-0.050 & 605 \\
-0.025 & 863 \\
0.000 & 1197
\end{array}
\right)$$