Let's define the following: $A_1 = x, A_j = \cos(\sin A_{j - 1})$.
I notice that $\forall x \in \mathbb{R}$, $A_\infty \approx 0.768169157$
Is there an exact value for $A_\infty$?
Let's define the following: $A_1 = x, A_j = \cos(\sin A_{j - 1})$.
I notice that $\forall x \in \mathbb{R}$, $A_\infty \approx 0.768169157$
Is there an exact value for $A_\infty$?
Yes, for all $A_1\in \mathbb{R}$ the recurrence $(A_n)_n$ converges to $A_{\infty}$ which is the unique fixed point of the contraction mapping $f(x)=\cos(\sin(x))$. This means that $A_{\infty}$ is the only solution of the equation $$x = \cos(\sin (x)).$$ I'm afraid that the real number $A_{\infty}\approx 0.768169156736795977$ has not a "closed form".
P.S. The function $f$ is a contraction over $\mathbb{R}$ because for any $x\in\mathbb{R}$, $$|f'(x)|=|-\sin(\sin(x))\cos(x)|\leq \sin(1)<1.$$