My simple problem relates with my question about sign-alternating sums of numbers, which opposite to coprime with $m$.
$$1-\frac{1}{3}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}-\frac{1}{13}+\cdots=\frac{\pi}{10}\left[\cot\left(\frac{\pi}{10}\right)-\cot\left(\frac{3\pi}{10}\right)\right]=\frac{\pi}{5^{3/4}\sqrt{\varphi}}=A$$
Here $\varphi=\frac{1+\sqrt{5}}{2}$.
$$A=\prod\limits_{p|10}\left(1+\frac{1}{p}\right)\prod\limits_{p}^{\infty}\left(1+\frac{1}{p}\right)^{-1}\prod\limits_{p[10n+3]}^{\infty}\frac{p+1}{p-1}\prod\limits_{p[10n+9]}^{\infty}\frac{p+1}{p-1}$$
$$A=\prod\limits_{p|10}\left(1-\frac{1}{p}\right)\prod\limits_{p}^{\infty}\left(1-\frac{1}{p}\right)^{-1}\prod\limits_{p[10n+1]}^{\infty}\frac{p-1}{p+1}\prod\limits_{p[10n+7]}^{\infty}\frac{p-1}{p+1}$$
$$\prod\limits_{p[10n+1]}^{\infty}\frac{p-1}{p+1}\prod\limits_{p[10n+3]}^{\infty}\frac{p+1}{p-1}\prod\limits_{p[10n+7]}^{\infty}\frac{p-1}{p+1}\prod\limits_{p[10n+9]}^{\infty}\frac{p+1}{p-1}=\frac{A^2}{\zeta(2)}\prod\limits_{p|10}\left(1-\frac{1}{p^2}\right)^{-1}=B$$
$$B=\frac{\pi^2}{5\sqrt{5}\varphi}\cdot\frac{6}{\pi^2}\cdot\frac{4\cdot25}{3\cdot24}=\frac{\sqrt{5}}{3\varphi}$$
But by computing we have $$B\approx\sqrt{\frac{\varphi^5}{5}}$$ I use $\approx$, because I not sure. But next I find result, which I sure is true.
$$1+\frac{1}{3}-\frac{1}{7}-\frac{1}{9}+\frac{1}{11}+\frac{1}{13}-\cdots=\frac{\pi}{10}\left[\cot\left(\frac{\pi}{10}\right)+\cot\left(\frac{3\pi}{10}\right)\right]=\frac{\pi\sqrt{\varphi}}{5^{3/4}}=C$$
$$\prod\limits_{p[10n+1]}^{\infty}\frac{p-1}{p+1}\prod\limits_{p[10n+3]}^{\infty}\frac{p-1}{p+1}\prod\limits_{p[10n+7]}^{\infty}\frac{p+1}{p-1}\prod\limits_{p[10n+9]}^{\infty}\frac{p+1}{p-1}=\frac{B^2}{\zeta(2)}\prod\limits_{p|10}\left(1-\frac{1}{p^2}\right)^{-1}=D$$
So it must be equal to $\frac{\sqrt{5}\varphi}{3}$, but by computing we have $$D\approx\frac{4}{\sqrt{5\varphi^5}}$$
Then we can be sure, that
$$\prod\limits_{p[10n+1]}^{\infty}\frac{p-1}{p+1}\prod\limits_{p[10n+9]}^{\infty}\frac{p+1}{p-1}=\sqrt{BD}=\frac{2}{\sqrt{5}}$$
Why we have discrepancy of $A$ with $B$, and $C$ with $D$?