If you have a quadratic form $f(X_1,...,X_n)=\sum_{i,j=1}^n a_{i,j}X_iX_j$ or $f(X_1,...,X_n)=\sum_{i=1}^n a_iX_i^2$ over a field K, how do you define "nondegenerate"?
I found https://en.wikipedia.org/wiki/Nondegenerate_form, but I dont know how to understand it in this situation.
(I'm working with K=$\mathbb{Q}_p$ and K=$\mathbb{Q}$)