Let $A$ be a constant and $z$ a variable. Evaluate the integral: $$\int \frac{\mathrm dz}{(A^2+z^2)\sqrt{2A^2+z^2}}$$
Note: I've tried the most common trigonometric substitutions$($like $z = A\tan(\theta))$, but had no success.
Let $A$ be a constant and $z$ a variable. Evaluate the integral: $$\int \frac{\mathrm dz}{(A^2+z^2)\sqrt{2A^2+z^2}}$$
Note: I've tried the most common trigonometric substitutions$($like $z = A\tan(\theta))$, but had no success.
Let $z=\sqrt{2}A\tan \theta$
The integral becomes (I will just skip the trivial steps) $$\int \frac{\cos\theta d\theta}{A^2(1+\sin^2\theta)} = \frac{1}{A^2}\int \frac{ d\sin\theta}{1+\sin^2\theta} = \frac{\arctan(\sin\theta)}{A^2}$$
I think this is clear enough and you can figure out the rest.
you Can use the Substitution $$\sqrt{2A^2+z^2}=t+z$$ then you will get $$z=\frac{2A^2-t^2}{2t}$$ and $$dz=-\frac{2 A^2+t^2}{2 t^2}dt$$
An efficient method that doesn’t require any trig substitution is the substitution $z=\frac1{t}$:
$$\begin{align}\int\frac{\mathrm dz}{(A^2+z^2)\sqrt{2A^2+z^2}}&=\frac{-\text{sgn}A}{A^3}\int\frac{t\mathrm dt}{\left(t^2+\frac1{A^2}\right)\sqrt{2t^2+\frac1{A^2}}}\\&\overset{\sqrt{2t^2+\frac1{A^2}}=u}{=} \frac{-\text{sgn}A}{4A^3}\int\frac{\mathrm du}{\frac{u^2}2+\frac1{2A^2}}\\&=\cdots\end{align}$$
You are on the right track in recognizing the use of the substitution $z=A\tan\theta$; it is indeed feasible:
$$\begin{align}\int\frac{\mathrm dz}{(A^2+z^2)\sqrt{2A^2+z^2}}&=\frac1{A}\int\frac{\mathrm d\theta}{\sqrt{A^2+A^2\sec^2\theta}}\\&=\frac1{A^2\text{sgn}A}\int\frac{\cos\theta\mathrm d\theta}{\sqrt{2-\sin^2\theta}}\\&=\frac1{A^2\text{sgn}A}\sin^{-1}\left(\frac{\sin\theta}{\sqrt2}\right)+C\end{align}$$
Now, just do the back-substitution.
Just like the trig substitution you thought of, an analogous hyperbolic substitution $z=\sqrt2|A|\sinh\theta$ can be performed since $\frac{\mathrm d}{\mathrm dx}\sinh^{-1}\left(\frac{x}{a}\right)=\frac1{\sqrt{x^2+a^2}}$:
$$\begin{align}\int\frac{\mathrm dz}{(A^2+z^2)\sqrt{2A^2+z^2}}&=\int\frac{\mathrm d\theta}{A^2(\cosh^2\theta+\sinh^2\theta)}\\&=\frac1{A^2}\int\text{sech}2\theta\mathrm d\theta\\&=\frac1{2A^2}\tan^{-1}(\sinh2\theta)+C\end{align}$$