Suppose $f:\mathbb{R} \to \mathbb{R}$ is a continuous function such that $f(f(x)) = 1-x^3$, for all $x \in \mathbb{R}$.
Note that $f$ is injective, since
\begin{align*}
&f(x) = f(y)\\[4pt]
\implies\;&f(f(x))=f(f(y))\\[4pt]
\implies\;&1-x^3 = 1-y^3\\[4pt]
\implies\;&x^3=y^3\\[4pt]
\implies\;&x=y\\[4pt]
\end{align*}
Since $f$ is injective and continuous, it follows that $f$ is strictly monotonic.
If $f$ is strictly increasing, then
\begin{align*}
&x < y\\[4pt]
\implies\;&f(x) < f(y)\\[4pt]
\implies\;&f(f(x)) < f(f(y))\\[4pt]
\implies\;&1-x^3 < 1-y^3\\[4pt]
\implies\;&x^3 > y^3\\[4pt]
\implies\;&x > y\\[4pt]
\end{align*}
contradiction.
If $f$ is strictly decreasing, then
\begin{align*}
&x < y\\[4pt]
\implies\;&f(x) > f(y)\\[4pt]
\implies\;&f(f(x)) < f(f(y))\\[4pt]
\implies\;&1-x^3 < 1-y^3\\[4pt]
\implies\;&x^3 > y^3\\[4pt]
\implies\;&x > y\\[4pt]
\end{align*}
contradiction.
Hence, no such function $f$ exists.