This is from Rudin PMA:
Theorem 3.42 Suppose
(a) the partial sums $A_n$ of $\sum a_n$ form a bounded sequence;
(b) $b_0\geqslant b_1\geqslant b_2\geqslant \dots;$
(c) $\lim_{n\to \infty} b_n=0.$
Then $\sum a_nb_n$ converges.
The proof goes like this:
Choose $M$ such that $|A_n|\le M$ for all $n$. Given $\varepsilon>0$, there is an integer $N$ such that $b_n\le\dfrac{\varepsilon}{2M}$. For $N\le p\le q$, we have $$\left|\sum_{n=p}^q a_nb_n\right|=\left|\sum_{n=p}^{q-1} A_n(b_n-b_{n+1})+A_qb_q-A_{p-1}b_p\right|\le M\left|\sum_{n=p}^{q-1} (b_n-b_{n+1})+b_q+b_p\right|$$.
I can't understand how this last inequality is derived. Rudin claims that it depends on the fact that $b_n-b_{n+1}\ge0$.