$\def\d{\mathrm{d}}$I would like to compute the following limit, $$\displaystyle{\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x} .$$
I am looking for a high school answer.
I tried writing $$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}}{\frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x = \lim_{n \to \infty} \lim_{ε \to \frac{\pi}{2}}\int_0^ε{\frac{(\sin(x))^n}{1-\sin(x)}}\,\d x},$$
but it doesn't help me, since $1 - \sin(x) \leq 1, \forall x \in \left[0, \dfrac{\pi}{2}\right]$.