I use the following version of Lopital's rule: if $f(x),g(x)$ are differentiable on $(0,\infty)$, with $|g(x)|\to \infty $ as $x\to \infty$. Then $$\lim_{x\to \infty} \frac{f'(x)}{g'(x)} = L \implies \lim_{x\to \infty} \frac{f(x)}{g(x)} = L$$
Note that no assumption is imposed on $f(x)$. The proof is reminiscent to that of Stolz's theorem.
We use the lopital's rule on the function
$$\frac{e^x f'(x)-e^xf(x)}{e^x}$$
To obtain $$\lim_{x\to\infty} \frac{(e^x f'(x)-e^x f(x))'}{(e^x)'} = \lim_{x\to\infty} \frac{e^xf''(x)-e^xf(x)}{e^x} = \lim_{x\to\infty} (f''(x)-f(x))=0$$ Hence $$\lim_{x\to\infty}\frac{e^x f'(x)-e^xf(x)}{e^x} =0=\lim_{x\to\infty}(f'(x)-f(x))$$
This implies $\lim_{x\to\infty} f'(x) = 0$.
Now use lopital's rule on
$$\frac{xe^x f'(x)-xe^xf(x)}{e^x}$$
To obtain $$\begin{aligned}\lim_{x\to\infty} \frac{(xe^x f'(x)-xe^x f(x))'}{(e^x)'} &= \lim_{x\to\infty} \frac{e^xf'(x)+xe^xf''(x)-e^x f(x)-xe^x f(x)}{e^x} \\ &= \lim_{x\to\infty} (f'(x)+xf''(x)-f(x)-xf(x))=0 \end{aligned}$$ where we used result obtained above. Hence $$\lim_{x\to\infty}\frac{xe^x f'(x)-xe^xf(x)}{e^x} =0=\lim_{x\to\infty}(xf'(x)-xf(x))$$
This implies $\lim_{x\to\infty} xf'(x)=0$.