I know the bound
$|a+b|^q \leq 2^{q-1} (|a|^q + |b|^q)$
See here for a proof. I can use this to show the bound
$|a+b+c|^q \leq 2^{q-1}(|a|^q + 2^{q-1}(|b| + |c|))$
and since the order is arbitrary I can do
$|a+b+c|^q \leq 2^{q-1}(\min(|a|^q + 2^{q-1}(|b| + |c|), |b|^q + 2^{q-1}(|a| + |c|), |c|^q + 2^{q-1}(|a| + |b|)))$
But is this the sharpest bound?