Prove that $\frac{\|a\|^2}{a^TAa}\le \|A^{-1}\|$ where $a\in \mathbb{R}^n$, $A\in \mathbb{R}^{n\times n}$ is a symmetric positive definite matrix and $\|x\|$ is the Euclidean norm $\sqrt(x_1^2+\cdots+x_n^2),x\in\mathbb{R}^n$.
For a matrix $A$, $\|A\|=\max \{\|Ax\|:\|x\|=1\}$, for a symmetric matrix we have $\max\{|x^TAx|:\|x\|=1\}$ and also the maximum absolute value of the eigenvalues of $A$.
I see that $\frac{a^TAa}{\|a\|^2}=\frac{a^T}{\|a\|}A\frac{a}{\|a\|}\le \|A\|$. So $\frac{\|a\|^2}{a^TAa}\ge\|A\|^{-1}$.
We also have $\|A\|\|A^{-1}\|\ge1$.