Question: Is it true that a non-solvable primitive group $G$ of degree $n$ satisfies $|G| \ge 6n$?
It is checked below for $n<2500$. If it is true in general, then the bound is optimal because $A_5$ has a maximal subgroup of index $10$. If moreover we assume $n>10$, then is it true that $|G| \ge 12n$?
IOW: Let $G \neq A_5$ be a non-solvable group and $M$ a core-free maximal subgroup. Is $|M|\ge 12?$
gap> PrimitiveNonSolvableBound(2,2499);
[ [ 5, 60, 12 ], [ 6, 60, 10 ], [ 10, 60, 6 ], [ 28, 336, 12 ], [ 55, 660, 12 ], [ 91, 1092, 12 ], [ 819, 9828, 12 ], [ 2109, 25308, 12 ] ]
PrimitiveNonSolvableBound:=function(o1,o2)
local o,i,G,No,T,ord,r;
T:=[]; r:=12;
for o in [o1..o2] do
No:=NrPrimitiveGroups(o);
for i in [1..No] do
G:=PrimitiveGroup(o,i);
ord:=Order(G);
if not IsSolvable(G) and ord/o<=r then
Add(T,[o,ord,ord/o]);
break;
fi;
od;
od;
return T;
end;;