Just write for any $x>0$,
$$\frac{f(x)}{x}=\frac{(f(x)-f(x-1))+(f(x-1)+f(x-2))+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{x}+\frac{f(x-\lfloor x\rfloor)}{x}$$
where $\lfloor x\rfloor$ is the integer part.
As $f$ is bounded on $[0,1]$, the summand $\frac{f(x-\lfloor x\rfloor)}{x}$ goes to $0$ as $x$ goes to infinity. Hence we only have to take into account the limit of $$\frac{(f(x)-f(x-1))+(f(x-1)+f(x-2))+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{x}\text{.}$$
Now, the proof is similar to that of the Stolz–Cesàro theorem. The idea is to divide the average in those difference that are near $L$, so their average remains near $L$, and those who are far but we can control by the hypothesis on $f$ being bounded, which will vanish in the limit.
By hypotesis on $f$, for each $\varepsilon>0$, there is an integer $C_\varepsilon>0$ such that for all $x\geq C_\varepsilon$,
$$|f(x+1)-f(x)-L|<\varepsilon\text{,}$$
which is the limit definition written out for $\lim_{x\to\infty}f(x+1)-f(x)=L$. And again by hypothesis, for each $\varepsilon>0$, there is $M_\varepsilon>0$ such that
$$|f(x)|\leq M_\varepsilon$$
for all $x\in[0,C_\varepsilon]$.
Write $\frac{(f(x)-f(x-1))+(f(x-1)+f(x-2))+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{x}$ as the sum of
$$\frac{(f(x)-f(x-1))+(f(x-1)+f(x-2))+\cdots+(f(x-\lfloor x\rfloor+C_{\varepsilon/3}+1)-f(x-\lfloor x\rfloor+C_{\varepsilon/3}))}{\lfloor x\rfloor-C_{\varepsilon/3}}\frac{\lfloor x\rfloor-C_{\varepsilon/3}}{x}$$
and
$$\frac{(f(x-\lfloor x\rfloor+C_{\varepsilon/3})-f(x-\lfloor x\rfloor+C_{\varepsilon/3}-1)+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{C_{\varepsilon/3}}\frac{C_{\varepsilon/3}}{x}\text{.}$$
In the first one, all the summands $f(x-k)-f(x-k-1)$ satisfy $x-k-1\geq C_{\varepsilon/3}$ and so $|f(x-k)-f(x-k-1)|<\varepsilon/2$. By the triangular inequality, this gives
$$\left|\frac{(f(x)-f(x-1))+\cdots+(f(x-\lfloor x\rfloor+C_{\varepsilon/3}+1)-f(x-\lfloor x\rfloor+C_{\varepsilon/3}))}{\lfloor x\rfloor-C_{\varepsilon/3}}-L\right|<\varepsilon/3\text{.}$$
This implies that
$$\begin{align*}
&\left|\frac{(f(x)-f(x-1))+\cdots+(f(x-\lfloor x\rfloor+C_{\varepsilon/3}+1)-f(x-\lfloor x\rfloor+C_{\varepsilon/3}))}{\lfloor x\rfloor-C_{\varepsilon/3}}\frac{\lfloor x\rfloor-C_{\varepsilon/3}}{x}-L\right|\\
=&\left|\frac{(f(x)-f(x-1))+\cdots+(f(x-\lfloor x\rfloor+C_{\varepsilon/3}+1)-f(x-\lfloor x\rfloor+C_{\varepsilon/3}))}{\lfloor x\rfloor-C_{\varepsilon/3}}-L\frac{\lfloor x\rfloor-C_{\varepsilon/3}}{x}\right|\left|\frac{x}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|\\
=&\left|\frac{(f(x)-f(x-1))+\cdots+(f(x-\lfloor x\rfloor+C_{\varepsilon/3}+1)-f(x-\lfloor x\rfloor+C_{\varepsilon/3}))}{\lfloor x\rfloor-C_{\varepsilon/3}}-L-L\frac{\lfloor x\rfloor-x-C_{\varepsilon/3}}{x}\right|\left|\frac{x}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|\\
\leq &\left|\frac{(f(x)-f(x-1))+\cdots+(f(x-\lfloor x\rfloor+C_{\varepsilon/3}+1)-f(x-\lfloor x\rfloor+C_{\varepsilon/3}))}{\lfloor x\rfloor-C_{\varepsilon/3}}-L\right|\left|\frac{x}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|+\left|L\frac{\lfloor x\rfloor-x-C_{\varepsilon/3}}{x}\right|\left|\frac{x}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|\\
<&\frac{\varepsilon}{3}\left|\frac{x}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|+|L|\left|\frac{\lfloor x\rfloor-x-C_{\varepsilon/3}}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|
\end{align*}$$
But taking $x>\max\{9C_{\varepsilon/3},C_{\varepsilon/3}+8|L|(1+C_{\varepsilon/3})/\varepsilon\}$, this gives
$$<3\varepsilon/8+\varepsilon/8\leq \varepsilon/2$$
as $\left|\frac{x}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|$ is monotone decreasing converging to $1$ as $x\to\infty$ and $|L|\left|\frac{\lfloor x\rfloor-x-C_{\varepsilon/3}}{\lfloor x\rfloor-C_{\varepsilon/3}}\right|\leq |L|(1+C_{\varepsilon/3})/(\lfloor x\rfloor-C_{\varepsilon/3})$.
In the second one, each $f(x-k)-f(x-k-1)$ satisfies that $x-k,x-k-1\in[0,C_{\varepsilon/3}]$ and so
$$|f(x-k)-f(x-k-1)|\leq 2M_{\varepsilon/3}\text{.}$$
Because of this,
$$\begin{align*}
&\frac{(f(x-\lfloor x\rfloor+C_{\varepsilon/3})-f(x-\lfloor x\rfloor+C_{\varepsilon/3}-1)+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{C_{\varepsilon/3}}\frac{C_{\varepsilon/3}}{x}\\
\leq& \frac{2M_{\varepsilon/3}C_{\varepsilon/3}}{x}
\end{align*}$$
which for $x>4M_{\varepsilon/3}C_{\varepsilon/3}/\varepsilon$ satisfies
$$<\varepsilon/2\text{.}$$
Combining these bounds, we obtain that for every $\varepsilon>0$, if
$$x>\max\{9C_{\varepsilon/3},C_{\varepsilon/3}+8|L|(1+C_{\varepsilon/3})/\varepsilon,4M_{\varepsilon/3}C_{\varepsilon/3}/\varepsilon\}\text{,}$$
then
$$\left|\frac{(f(x)-f(x-1))+(f(x-1)+f(x-2))+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{x}-L\right|<\varepsilon$$
by the triangular inequality. This means that
$$\lim_{x\to\infty}\frac{(f(x)-f(x-1))+(f(x-1)+f(x-2))+\cdots+(f(x-\lfloor x\rfloor+1)-f(x-\lfloor x\rfloor))}{x}=L$$
finishing the proof that
$$\lim_{x\to\infty}f(x)/x=L\text{.}$$