$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
I'll start from de
Jack D'Aurizio "integral expression":
\begin{align}
S & = -\,{1 \over 2}\int_{0}^{1}{\ln\pars{1 - x + x^{2}} \over
x\pars{1 - x}}\,\dd x =
-\,{1 \over 2}\int_{0}^{1}
{\ln\pars{1 - x + x^{2}} \over x}\,\dd x - {1 \over 2}\
\overbrace{\int_{0}^{1}{\ln\pars{1 - x + x^{2}} \over 1 - x}\,\dd x}
^{\ds{\mbox{lets}\ x\ \mapsto\ 1 - x}}
\\[5mm] & =
-\int_{0}^{1}{\ln\pars{1 - x + x^{2}} \over x}\,\dd x
\,\,\,\stackrel{\mrm{IBP}}{=}\,\,\,
\int_{0}^{1}\ln\pars{x}\,{2x - 1 \over x^{2} - x + 1}\,\dd x =
\int_{0}^{1}\ln\pars{x}\,{2x - 1 \over \pars{x - r}\pars{x - \bar{r}}}\,\dd x
\end{align}
where
$\ds{r \equiv {1 + \root{3}\ic \over 2} = \exp\pars{{\pi \over 3}\,\ic}}$.
Then,
\begin{align}
S & =
\int_{0}^{1}\ln\pars{x}\bracks{{2r - 1 \over \pars{r - \bar{r}}\pars{x - r}} -{2\bar{r} - 1 \over \pars{r - \bar{r}}\pars{x - \bar{r}}}}\dd x =
{1 \over 2\ic\,\Im\pars{r}}\bracks{2\ic\,\Im\int_{0}^{1}\ln\pars{x}
\,{2r - 1 \over x - r}\,\dd x}
\\[5mm] & =
{1 \over \root{3}/2}\,\Im\pars{\bracks{-\root{3}\ic}
\int_{0}^{1}{\ln\pars{x} \over r - x}\,\dd x} =
-2\,\Re
\int_{0}^{1/r}{\ln\pars{rx} \over 1 - x}\,\dd x
\\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\,
-2\,\Re\int_{0}^{\large\bar{r}}{\ln\pars{1 - x} \over x}\,\dd x =
2\,\Re\int_{0}^{\large\bar{r}}\mrm{Li}_{2}'\pars{x}\,\dd x =
2\,\Re\mrm{Li}_{2}\pars{\exp\pars{-\,{\pi \over 3}\,\ic}}
\\[5mm] & =
2\,\Re\mrm{Li}_{2}\pars{\exp\pars{2\pi\bracks{1 \over 6}\,\ic}}
\\[5mm] & =
-\,{\pars{2\pi\ic}^{2} \over 2!}\,\
\overbrace{\mrm{B}_{2}\pars{1 \over 6}}^{\ds{1 \over 36}} =
{\pi^{2} \over 18}\qquad\qquad
\pars{~\mrm{B}_{n}\pars{x}:\ Bernoulli\ Polynomial~}
\end{align}
which is
Junqui$\mathrm{\grave{e}}$re's Inversion Formula
in terms of Bernoulli Polynomials $\ds{\mrm{B}_{n}\pars{x}}$. Note that $\ds{\mrm{B}_{2}\pars{x} = x^{2} - x + {1 \over 6}}$.
Then,
$$
\bbx{S \equiv
\sum_{n = 1}^{\infty}{1 \over n^{2}{2n \choose n}} = \zeta\pars{2}\,{1 \over 3}}
$$