So $z=re^{i\theta}$ and $f=u(r,\theta)+iv(r,\theta)$
Now $z+\Delta z=(r+\Delta r)e^{i(\theta + \Delta\theta)}$
$$\Rightarrow \Delta z=e^{i\theta}(re^{i\Delta\theta}+\Delta re^{i\Delta\theta}-r)$$
Using Euler's formula and approximating $\cos\Delta\theta\to1$ and $\sin\Delta\theta\to\Delta\theta$,
$$\Delta z=e^{i\theta}(r+ir\Delta\theta+\Delta r+i\Delta r\Delta\theta-r)$$
Here, the term $\Delta r\Delta\theta$ is negligible. So,
$$\Delta z=e^{i\theta}(\Delta r+ir\Delta\theta)$$
By the definition of a derivative,
$${df\over dz}=\lim_{\Delta z\to0}{f(z+\Delta z)-f(z) \over\Delta z}$$
$${df\over dz}=\lim_{\Delta r\to0,\Delta\theta\to0}{f(r+\Delta r,\theta+\Delta\theta)-f(r,\theta) \over e^{i\theta}(\Delta r+ir\Delta\theta)}$$
If we let $\Delta\theta\to0$ first,
$${df\over dz}=e^{-i\theta}\lim_{\Delta r\to0}{f(r+\Delta r,\theta)-f(r,\theta) \over\Delta r}$$
$${df\over dz}=e^{-i\theta}{\partial f\over\partial r}\tag1$$
But if we let $\Delta r\to0$ first,
$${df\over dz}=e^{-i\theta}\lim_{\Delta\theta\to0}{f(r,\theta+\Delta\theta)-f(r,\theta) \over ir\Delta\theta}$$
$${df\over dz}={-i\over r}e^{-i\theta}{\partial f\over\partial\theta}\tag2$$
Adding equations 1 and 2 and dividing by 2 gives,
$${df\over dz}={e^{-i\theta}\over2}\left({\partial f\over\partial r}-{i\over r}{\partial f\over\partial\theta}\right)\tag{QED.}$$
Use the same reasoning to derive ${df\over d\bar z}$