I'm trying to prove the following formula.
Given a spherical triangle with side lengths $a,b,c$ and interior angles $ \alpha,\beta,\gamma $ prove the following formula $$2\sin \frac{A}{2} =\frac{\sqrt{\sin(s) \sin(s-a) \sin(s-b) \sin(s-c)}}{\cos \frac{a}{2}\cos\frac{b}{2}\cos\frac{c}{2}}$$ where $A= \alpha+\beta+\gamma -\pi$ and $s=\frac{1}{2}(a+b+c)$.
I wanted to show that $$2 \sin \frac{A}{2}\cos \frac{a}{2}\cos\frac{b}{2}\cos\frac{c}{2} = \sqrt {\sin(s) \sin(s-a)\sin(s-b)\sin(s-c)} .$$
So far I was able to prove that
$$\sqrt {\sin(s) \sin(s-a)\sin(s-b)\sin(s-c)} = \sin(a)\sin(b)\sin(\gamma)$$
$$\sin(a)=2\sin\frac{a}{2} \cos\frac{a}{2}$$
$$\sin(b)=2\sin\frac{b}{2} \cos\frac{b}{2}$$
so I get
$$\sqrt {\sin(s) \sin(s-a)\sin(s-b)\sin(s-c)} = 2\sin\frac{a}{2} \cos\frac{a}{2} \cdot 2\sin\frac{b}{2} \cos\frac{b}{2} \cdot \sin(\gamma)$$ $$ = 4\sin\frac{a}{2}\sin\frac{b}{2}\sin(\gamma)\cos\frac{a}{2}\cos\frac{b}{2}.$$
Now I only have to show that $2\sin \frac{A}{2}\cos\frac{c}{2} =4\sin\frac{a}{2}\sin\frac{b}{2}\sin(\gamma)$, or equivalently $\sin \frac{A}{2}\cos\frac{c}{2} =2\sin\frac{a}{2}\sin\frac{b}{2}\sin(\gamma)$.
Since I know that $A-(\alpha+\beta)+\pi= \gamma $, it follows $$2\sin\frac{a}{2}\sin\frac{b}{2}\sin(\gamma)=2\sin\frac{a}{2}\sin\frac{b}{2}\sin(A-(\alpha+\beta)+\pi).$$ But I have no idea what to do now.