For any $\epsilon > 0$, choose $\delta > 0$ such that for any partition $P$ with norm $\|P\| < \delta$, the inequality
$$\left| \sum_{i=1}^{n} f(x_{i-1}) \Delta x_i - I \right| < \frac{\epsilon}{10}$$
holds. Then take a positive integer $N > \max \left\{ \frac{5(b-a) \sup |f|}{\epsilon}, \frac{1}{\delta} \right\}$, and consider the partition
$$P_0: x_k^0 = a + (b-a) \frac{k}{2N}, \quad k = 0,1,2,\dots,2N.$$
For any $t_i \in [x_{i-1}^0, x_i^0]$, $i=1,2,\dots,2N$, consider the subpartitions:
$$
\begin{aligned}
P_1: & \quad x_0^0, t_1, t_2, x_2^0, t_3, t_4, x_4^0, \dots, x_{2N}^0; \\
P_2: & \quad x_0^0, t_1, \quad x_2^0, t_3, \quad x_4^0, \dots, x_{2N}^0.
\end{aligned}
$$
We have $\|P_1\| < \delta$ and $\|P_2\| < \delta$, and by considering the difference of the Riemann sums corresponding to $P_1$ and $P_2$, we obtain:
$$\left| \sum_{i=1}^{N} \bigl[ f(t_{2i-1}) - f(t_{2i}) \bigr] (x_{2i}^0 - t_{2i}) \right| < \frac{2\epsilon}{10}.$$
Similarly, consider the partitions:
$$
\begin{aligned}
P_3: & \quad x_0^0, x_1^0, t_2, t_3, x_3^0, t_4, t_5, x_5^0, \dots, x_{2N-1}^0, x_{2N}^0; \\
P_4: & \quad x_0^0, x_1^0, t_2, \quad x_3^0, t_4, \quad x_5^0, \dots, x_{2N-1}^0, x_{2N}^0.
\end{aligned}
$$
We have $\|P_3\| < \delta$ and $\|P_4\| < \delta$, and by considering the difference of the sums, we get:
$$\left| \sum_{i=1}^{N-1} \bigl[ f(t_{2i}) - f(t_{2i+1}) \bigr] (x_{2i+1}^0 - t_{2i+1}) \right| < \frac{2\epsilon}{10}.$$
Adding the two inequalities, we obtain:
$$\left| \sum_{i=2}^{2N} \bigl[ f(t_{i-1}) - f(t_i) \bigr] (x_i^0 - t_i) \right| < \frac{4\epsilon}{10}.$$
Consider the partition $P_5: x_0^0, t_1, t_2, \dots, t_{2N}, x_{2N}^0$. Since $\|P_5\| < \delta$, we have:
$$\left| f(x_0^0) (t_1 - x_0^0) + \sum_{i=1}^{2N-1} f(t_i) (t_{i+1} - t_i) + f(t_{2N}) (x_{2N}^0 - t_{2N}) - I \right| < \frac{\epsilon}{10}.$$
Rewrite the sum from (3) as:
$$\left| \sum_{i=1}^{2N-1} f(t_i) (x_{i+1}^0 - t_{i+1}) - \sum_{i=2}^{2N} f(t_i) (x_i^0 - t_i) \right| < \frac{4\epsilon}{10}$$
and add it to (4). After algebraic manipulation, we get:
$$\left| \sum_{i=2}^{2N-1} f(t_i) (x_{i+1}^0 - x_i^0) + f(t_1) (x_2^0 - t_1) + f(x_0^0) (t_1 - x_0^0) - I \right| < \frac{5\epsilon}{10}.$$
Then,
$$\left| \sum_{i=2}^{2N-1} f(t_i) (x_{i+1}^0 - x_i^0) - I \right| < \frac{5\epsilon}{10} + \left| f(t_1) (x_2^0 - t_1) + f(x_0^0) (t_1 - x_0^0) \right| \leq \frac{5\epsilon}{10} + \frac{3(b-a) \sup |f|}{2N} \leq \frac{5\epsilon}{10} + \frac{3\epsilon}{10} = \frac{8\epsilon}{10}.$$
Since $x_{i+1}^0 - x_i^0 = x_i^0 - x_{i-1}^0$ (uniform partition), we have:
$$\left| \sum_{i=2}^{2N-1} f(t_i) (x_i^0 - x_{i-1}^0) - I \right| < \frac{8\epsilon}{10}.$$
Adding the first and last terms:
$$\left| \sum_{i=1}^{2N} f(t_i) (x_i^0 - x_{i-1}^0) - I \right| < \frac{8\epsilon}{10} + \left| f(t_1) (x_1^0 - x_0^0) \right| + \left| f(t_{2N}) (x_{2N}^0 - x_{2N-1}^0) \right| \leq \frac{8\epsilon}{10} + \frac{(b-a) \sup |f|}{2N} + \frac{(b-a) \sup |f|}{2N} \leq \frac{8\epsilon}{10} + \frac{2\epsilon}{10} = \epsilon.$$
By the arbitrariness of $t_i$, the oscillation sum satisfies:
$$\left| \sum_{i=1}^{2N} w_i(f) (x_i^0 - x_{i-1}^0) \right| < 2\epsilon,$$
where $w_i(f)$ is the oscillation of $f$ on $[x_{i-1}^0, x_i^0]$. This implies $f$ is Riemann integrable, and clearly $I = \int_a^b f(x) dx$.