1

How can we prove formally that the series $\sum a_{n}$ diverges whose $n^{th}$ term has been provided below:

$$ a_{n}=\frac{1}{n}\left( 1+ \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}} \right),\qquad n\ge1.$$

The sequence converges to zero but I am not sure how book has proved that the series diverges?

Olivier Oloa
  • 122,789
userNoOne
  • 1,214
  • 1
    As a sidenote: one can estimate $a_n$ using that it's basically a Riemann sum: $a_n = \frac{1}{n}\sum_{i=1}^n \frac{1}{\sqrt{i/n}}\cdot \frac{1}{\sqrt{n}} \sim \frac{1}{\sqrt{n}}\int_0^1 \frac{dx}{\sqrt{x}}$ – Winther Jan 03 '18 at 11:06
  • Find a more general approach here:https://math.stackexchange.com/questions/2587694/studying-the-convergence-of-the-generalized-mean-series-sum-n-1-infty-le –  Jan 03 '18 at 11:31
  • Stolz-Ces$\mathrm{\grave{a}}$ro Theorem: $\displaystyle\lim_{n \to \infty}a_{n} = \lim_{n \to \infty}{1 \over ,\sqrt{, n + 1, },} = \color{red}{0}$. – Felix Marin Apr 19 '18 at 05:11

2 Answers2

5

We have $$ a_n\ge\frac1n,\quad n=1,2,3,\cdots, $$ thus the given series $\sum a_n$ diverges by comparison test with the harmonic series.

Olivier Oloa
  • 122,789
2

A bit of detail :

$a_n =$

$ (1/n)(1+1/√2+1√3 +...1/√n)$

$ \gt (1/n)( n/√n) =1/√n \gt 1/n.$

$S_n := \sum_{k=1}^{n} 1/k $ diverges.

Peter Szilas
  • 21,123