(Note: This question has been cross-posted to MO.)
Is it true that every odd perfect number $N = q^k n^2$ can be written in the form $$N = \frac{r\sigma(r)}{2r - \sigma(r)}?$$
(Here, $q$ is a prime satisfying $q \equiv k \equiv 1 \pmod 4$ and $\gcd(q,n)=1$.)
In particular, setting $$r = ({q^{(k-1)/2}}n)^2$$ appears to work.
The proof is contained in this paper.
MY ATTEMPT
Setting $$r = ({q^{(k-1)/2}}n)^2$$ in $$\frac{r\sigma(r)}{2r-\sigma(r)}=\frac{q^{k-1}n^2\sigma(q^{k-1}n^2)}{2q^{k-1}n^2 - \sigma(q^{k-1}n^2)},$$ we shall show that this last quantity is equal to $q^k n^2 = N$.
We assume (?) that equality indeed holds and work our way backwards. (That is, we show that the steps are reversible.) $$\frac{q^{k-1}n^2\sigma(q^{k-1}n^2)}{2q^{k-1}n^2 - \sigma(q^{k-1}n^2)}={q^k}{n^2}.$$ Cancelling ${q^{k-1}}{n^2}$ from both sides of the last equation, we get $$\frac{\sigma(q^{k-1}n^2)}{2q^{k-1}n^2 - \sigma(q^{k-1}n^2)}=q.$$ $$\sigma(q^{k-1}n^2) = 2q^k n^2 - q\sigma(q^{k-1}n^2)$$ $$(q+1)\sigma(q^{k-1})\sigma(n^2) = 2q^k n^2.$$
Alas, here is where I get stuck. I do not know how to rewrite $$(q+1)\sigma(q^{k-1})$$ as $$\sigma(q^k).$$