$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\lim_{r\to\infty}{\int_{0}^{\pi/2}x^{r - 1}\cos\pars{x}\,\dd x \over \int_{0}^{\pi/2}x^{r}\cos\pars{x}\,\dd x} = {2 \over \pi}:\ {\large ?}}$.
With Laplace's Method
$\ds{\pars{~\mbox{note that the integrand is 'highly concentrated' around}\
x = \pi/2~}}$:
\begin{align}
\lim_{r\to\infty}{\int_{0}^{\pi/2}x^{r - 1}\cos\pars{x}\,\dd x \over \int_{0}^{\pi/2}x^{r}\cos\pars{x}\,\dd x} & =
\lim_{r\to\infty}{\ds{\int_{0}^{\pi/2}\pars{\pi/2 - x}^{r - 1}\sin\pars{x}\,\dd x} \over \ds{\int_{0}^{\pi/2}\pars{\pi/2 - x}^{r}\sin\pars{x}\,\dd x}}
\\[5mm] & =
\lim_{r\to\infty}{\ds{\int_{0}^{\pi/2}\exp\pars{\bracks{r - 1}\ln\pars{\pi/2 - x} + \ln\pars{\sin\pars{x}}}\,\dd x} \over
\ds{\int_{0}^{\pi/2}\exp\pars{r\ln\pars{\pi/2 - x} + \ln\pars{\sin\pars{x}}}\,\dd x}}
\\[5mm] & =
\lim_{r\to\infty}{\ds{\int_{0}^{\infty}
\exp\pars{-2\bracks{r - 1}x/\pi}\pars{\pi/2}^{\,r - 1}\, x\,\dd x} \over
\ds{\int_{0}^{\infty}\exp\pars{-2rx/\pi}\pars{\pi/2}^{\,r}\, x\,\dd x}}
\\[5mm] & =
\lim_{r\to\infty}{\ds{\pars{2/\pi}^{-1 - r}/\pars{r - 1}^{2}} \over
\ds{\pars{2/\pi}^{-2 - r}/r^{2}}} = \bbx{2 \over \pi} \approx 0.6366
\end{align}