2

Consider the integral equation for some given function $y(t)\in C[0,1]$ and a given constant $\lambda$ with $|\lambda|<1$, $$x(t)-\lambda\int_0^1 e^{t-s}x(s)ds=y(t).$$

Show that there exists a unique solution $x(t)\in C[0,1]$.

amazel
  • 63

1 Answers1

2

First, set $\displaystyle x_0(t) = y(t) + \frac{λ}{1 - λ} \int_0^1 \mathrm{e}^{t - s} y(s) \,\mathrm{d}s$. Because$$\begin{align*} y(t) + λ \int_0^1 \mathrm{e}^{t - s} x_0(s) \,\mathrm{d}s &= y(t) + λ \int_0^1 \mathrm{e}^{t - s} y(s) \,\mathrm{d}s + λ \int_0^1 \mathrm{e}^{t - s} \left(\frac{λ}{1 - λ}\int_0^1 \mathrm{e}^{s- u} y(u) \,\mathrm{d}u\right) \,\mathrm{d}s\\ &= y(t) + λ \int_0^1 \mathrm{e}^{t - s} y(s) \,\mathrm{d}s + \frac{λ^2}{1 - λ} \int_0^1 \int_0^1 \mathrm{e}^{t - u} y(u) \,\mathrm{d}u\mathrm{d}s\\ &= y(t) + λ \int_0^1 \mathrm{e}^{t - s} y(s) \,\mathrm{d}s + \frac{λ^2}{1 - λ} \int_0^1 \mathrm{e}^{t - u} y(u) \,\mathrm{d}u \int_0^1 \mathrm{d}s\\ &= y(t) + λ \int_0^1 \mathrm{e}^{t - s} y(s) \,\mathrm{d}s + \frac{λ^2}{1 - λ} \int_0^1 \mathrm{e}^{t - u} y(u) \,\mathrm{d}u\\ &= y(t) + \frac{λ}{1 - λ} \int_0^1 \mathrm{e}^{t - s} y(s) \,\mathrm{d}s = x_0(t), \end{align*}$$ then $x_0(t)$ is a solution to the given equation.

Now suppose $x(t)$ is a solution to the given equation, then$$ x(t) = y(t) + λ \int_0^1 \mathrm{e}^{t - s} x(s) \,\mathrm{d}s = y(t) + λ \mathrm{e}^t \int_0^1 \mathrm{e}^{-s} x(s) \,\mathrm{d}s. $$ Denote $\displaystyle c = λ \int_0^1 \mathrm{e}^{-s} x(s) \,\mathrm{d}s$, then $x(t) = y(t) + c\mathrm{e}^t$. Therefore,$$\begin{align*} y(t) + c\mathrm{e}^t &= x(t) = y(t) + λ \mathrm{e}^t \int_0^1 \mathrm{e}^{-s} x(s) \,\mathrm{d}s = y(t) + λ \mathrm{e}^t \int_0^1 \mathrm{e}^{-s} (y(s) + c\mathrm{e}^s) \,\mathrm{d}s\\ &= y(t) + λ \mathrm{e}^t \left(\int_0^1 \mathrm{e}^{-s} y(s) \,\mathrm{d}s + c\right), \end{align*}$$ which implies$$ c = λ \left(\int_0^1 \mathrm{e}^{-s} y(s) \,\mathrm{d}s + c\right), $$ i.e.$$ c = \frac{λ}{1 - λ} \int_0^1 \mathrm{e}^{-s} y(s) \,\mathrm{d}s. $$ Hence $x(t) = y(t) + c\mathrm{e}^t \equiv x_0(t)$, so the solution to the given equation is unique.

Ѕᴀᴀᴅ
  • 35,369
  • If that was your close vote here on that ancient question then that's not a good idea, since that is the canonical dupe target for that law (cf. 34 linked questions), so it needs to remain open so that answers from (to be deleted) dupes can be moved there if they are novel. – Bill Dubuque Apr 13 '25 at 07:31
  • @BillDubuque Retracted and flagged for locking instead. – Ѕᴀᴀᴅ Apr 13 '25 at 10:01