Problem : Find the limit of $$\lim_{x\to \infty}\frac{1}{x^2\sin x}=?$$
My Try :
let $\lim_{x\to \infty}\frac{1}{x^2\sin x}=L$ Lo we have :
$$\forall \epsilon >0 \ \ \ \exists M>0 \ \ :x>M \to |f(x)-L|<\epsilon$$
Let $\epsilon =1$ so :
$$ \exists M_1>0 \ \ :x>M_1 \to |\frac{1}{x^2\sin x}-L|<1$$
now $x=\lfloor M_1\rfloor \pi $
Thus there is no limit. Is it correct?