In addition to the comment above, I think it deserves a little explaination why: $R\left(\theta_{1}\right)R\left(\theta_{2}\right)=R\left(\theta_{1}+\theta_{2}\right)$
By using matrix multiplication we get:
$$R\left(\theta_{1}\right)R\left(\theta_{2}\right)=\begin{pmatrix}\cos\theta_{1}&-\sin\theta_{1}\\\sin\theta_{1}&\cos\theta_{1}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta_{2}&-\sin\theta_{2}\\\sin\theta_{2}&\cos\theta_{2}\end{pmatrix} = \begin{pmatrix}\cos\theta_{1}\cos\theta_{2}-\sin\theta_{1}\sin\theta_{2} & -\left(\sin\theta_{1}\cos\theta_{2}+\cos\theta_{1}\sin\theta_{2}\right)\\
\sin\theta_{1}\cos\theta_{2}+\cos\theta_{1}\sin\theta_{2} & -\sin\theta_{1}\sin\theta_{2}+\cos\theta_{1}\cos\theta_{2}
\end{pmatrix}$$
We will use the trigonometric identities:
$$\left(1\right) \cos\left(\theta_{1}+\theta_{2}\right)=\cos\theta_{1}\cos\theta_{2}-\sin\theta_{1}\sin\theta_{2}\\
\left(2\right) \sin\left(\theta_{1}+\theta_{2}\right)=\sin\theta_{1}\cos\theta_{2}+\cos\theta_{1}\sin\theta_{2}$$
And we will recieve:
$$R\left(\theta_{1}\right)R\left(\theta_{2}\right)=\begin{pmatrix}\cos\theta_{1}\cos\theta_{2}-\sin\theta_{1}\sin\theta_{2} & -\left(\sin\theta_{1}\cos\theta_{2}+\cos\theta_{1}\sin\theta_{2}\right)\\
\sin\theta_{1}\cos\theta_{2}+\cos\theta_{1}\sin\theta_{2} & -\sin\theta_{1}\sin\theta_{2}+\cos\theta_{1}\cos\theta_{2}
\end{pmatrix}=\begin{pmatrix}\cos\left(\theta_{1}+\theta_{2}\right) & \sin\left(\theta_{1}+\theta_{2}\right)\\
\sin\left(\theta_{1}+\theta_{2}\right) & \cos\left(\theta_{1}+\theta_{2}\right)
\end{pmatrix} = R\left(\theta_{1}+\theta_{2}\right)$$
As said in the comment above.