Let $a_0=5/2$ and $a_k=a^2_{k-1}-2$ for all $k\geq 1$.The question is to compute $$\prod_{k=0}^{\infty} \left(1-\frac{1}{a_k}\right)$$
I tried to calculate few terms.$a_0=5/2$, $a_1=17/4,a_2=257/16$ it seems that $a_k$ is of the form $2^{2^k}+2^{-2^{k}}$ however I am not sure about it.How to proceed without doing much guesswork.Any ideas?