0

$$ \lim_{x \to \infty} \left(\sqrt{x^2+x+1}-\sqrt{x^2-1} \right) $$

I have tried rationalizing but that just introduces a extra denominator. I have tried squaring and rooting but that give me $\lim_{ x \to \infty} \sqrt{x}$ which is not the answer.

4 Answers4

2

You can use binomial approximation $$(1+a)^b \approx 1+ba$$ for $a \to 0$.

This will give you (at $x \to \infty$)$$ \sqrt{x^2+x+1} = x\left(\sqrt{ 1+\underbrace{\frac 1x+ \frac1{x^2}}_{\to 0}}\right) \approx x\left(1+\frac1{2x}+\frac{1}{2x^2} \right)$$

And $$\sqrt{x^2-1}=x\left( \sqrt{1\underbrace{-\frac{1}{x^2}}_{\to 0}}\right) \approx x\left(1-\frac1{2x^2}\right)$$

Thus $$\lim_{x \to \infty} \left(\sqrt{x^2+x+1}-\sqrt{x^2-1} \right)= \lim_{x \to \infty} x\left(1+\frac1{2x}+\frac{1}{2x^2} \right)- x\left(1-\frac1{2x^2}\right)=\frac 12$$

Jaideep Khare
  • 19,551
1

As you said, we first proceed by rationalising:

$$\sqrt{x^2+x+1}-\sqrt{x^2 - 1} = \frac{x+2}{\sqrt{x^2+x+1}+\sqrt{x^2 - 1} }$$

Now divide by $x$ and apply limit $x \to \infty$.

$$ \lim_{x\to \infty}\frac{1+\frac{2}{x}}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+\sqrt{1 - \frac{1}{x^2}} }$$

You will see the limit is $1/2$

jonsno
  • 7,671
1

Not only $\lim_{x\to\infty}\sqrt x$ is not the answer, but it's not even an answer: a limit when $x$ tends to some value is a number, and cannot depend on $x$.

You can indeed rationalise, and use some equivalents for the denominator: $$\sqrt{x^2+x+1}-\sqrt{x^2-1}=\frac{x^2+x+1-(x^2-1)}{\sqrt{x^2+x+1}+\sqrt{x^2-1}}=\frac{x+2}{\sqrt{x^2+x+1}+\sqrt{x^2-1}}$$ Now $x+2\sim_\infty x$ and $\sqrt{x^2+x+1},\sqrt{x^2-1}\sim_\infty |x|$, so $$\sqrt{x^2+x+1}-\sqrt{x^2-1}\sim_\infty \frac x{2|x|}\to\begin{cases}\phantom{-}\dfrac12&\text{if }x\to+\infty,\\[1ex]- \dfrac12&\text{if }x\to -\infty.\end{cases}$$

Bernard
  • 179,256
0

$$\lim_{x \to \infty} \left(\sqrt{x^2+x+1}-\sqrt{x^2-1} \right) = \lim_{x \to \infty} \frac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-1} \right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-1}\right)}{ \sqrt{x^2+x+1}+\sqrt{x^2-1} } $$

$$= \lim_{x \to \infty} \frac{x² + x +1 - x² +1}{ \sqrt{x^2+x+1}+\sqrt{x^2-1}}$$

$$= \lim_{x \to \infty} \frac{ x +2}{ \sqrt{x^2+x+1}+\sqrt{x^2-1}}$$

$$= \lim_{x \to \infty} \frac{ x +2}{ \sqrt{x²(1+1/x+1/x²)}+\sqrt{x^2(1-1/x²)}}$$

$$= \lim_{x \to \infty} \frac{ x(1 +2/x)}{ x\sqrt{1+1/x+1/x²}+x\sqrt{1-1/x²}}$$

$$= \lim_{x \to \infty} \frac{ 1+2/x}{ \sqrt{1+1/x+1/x²}+\sqrt{1-1/x²}} = \frac{1}{1+1} = \frac{1}{2}$$