How to evaluate $ \lim_{x\to \infty} \ (3^x + 4^x\ )^ \frac{1}{x} $ ? edit: x>1
wolframalpha says its 4.
https://www.wolframalpha.com/input/?i=limit+(3%5Ex+%2B+4%5Ex)%5E(1%2Fx)+as+x-%3Einfinity
I tried to tackle this $ \infty^0\ $ form through log
$ \ e ^ \left ( \lim_{x\to \infty}\left(\frac {log_e(3^x + 4^x)}{x}\right)\ \right) $
Now its in $ \infty / \infty $ form.
Using L'Hospital , $ \ e ^ \left ( \lim_{x\to \infty} \frac{\left(\frac{(3^x)log_e 3+(4^x)log_e 4)}{(3^x + 4^x)}\right)}{1} \right) $ = $ \ e ^ \left ( \lim_{x\to \infty} {\frac{(3^x)log_e 3+(4^x)log_e 4)}{(3^x + 4^x)}} \right) $
Its in $ \infty / \infty $ form again. I am stuck here as this fraction remains in this form even upon further application of L'Hospital.
I came across this inequality somewhere
$4$< $ (3^x + 4^x\ )^ \frac{1}{x} $ < $2^ \frac{1}{x} .4 $
Is it valid?