I'm following the proof of the theorem 4.3.3 p. 47 of "Introduction to the distributions theory" by Friedlander and Joshi. We have the following identity
\begin{align*} \textbf{(1)} \displaystyle \langle u \otimes v, \varphi \rangle = \langle v(y), \langle u(x), \varphi(x,y) \rangle \rangle = \langle u(x), \langle v(y), \varphi(x,y) \rangle \rangle \end{align*}
where $\varphi \in \mathcal{D}(X\times Y)$. Ok I understand that this identity is worth. However, the same theorem, there is the next point
$\textbf{(4)}$ The tensor product is a separately continuous bilinear form on $\mathcal{D}'(X) \times \mathcal{D}'(Y)$
and in the proof it says that $(4)$ is immediate consequence of $(1)$. Sincerely, I did not understand what it means "separately" and how $(1)$ implies $(4)$.
Thank you for each reply.