Here's the full proof in a calculus called $C_R$, the precise implementation of the rules may vary for your calculus, though.
In $C_R$ you need biconditation introduction, it's the last step in proving a biconditional statement (after you have proved both directions separately). Also I use Reductio Ad Absurdum for the sake of simplicity of the proof.
$[1] \qquad 1 \quad \neg(\neg A \vee\neg B) \qquad \qquad \qquad \quad $A
$[2] \qquad 2 \quad \neg A \qquad \qquad \qquad \qquad\qquad \quad $A
$[2] \qquad 3 \quad \neg A \vee \neg B \qquad \qquad \quad \qquad \quad \vee I. 2$
$[1]\qquad 4 \quad A \qquad \qquad \qquad \quad \quad\qquad \quad $RAA, 1,3,2
$[5]\qquad 5 \quad \neg B \qquad \qquad \qquad \qquad \qquad \quad $A
$[5] \qquad 6 \quad \neg A \vee \neg B \qquad \qquad \qquad \qquad \vee Int 5$
$[1]\qquad 7 \quad B \qquad \qquad \qquad \qquad \qquad \quad $RAA 1,6,5
$[1]\qquad 8 \quad A \wedge B \qquad \qquad \qquad \qquad \quad \wedge Int 4,7$
$[]\quad \qquad 9 \quad \neg(\neg A \wedge \neg B) \Rightarrow A \wedge B \quad \quad \Rightarrow Int 8,1$
$[10]\qquad 10 \quad A \wedge B\qquad \qquad \qquad \qquad \quad $A
$[11] \qquad 11\quad \neg A \vee \neg B \qquad \qquad \qquad \qquad $A
$[10]\qquad 12 \quad A \qquad \qquad \qquad \qquad \qquad \quad \wedge E 10$
$[10]\qquad 13 \quad B \qquad \qquad \qquad \qquad \qquad \quad \wedge E 10$
$[10,11] \quad 14 \quad \neg B \qquad \qquad \qquad \qquad \qquad \vee E 11,12$
$[10] \qquad 15 \quad \neg (\neg A \vee \neg B) \qquad \qquad \qquad \quad $RAA 13,14,11
$[] \qquad \quad 16 \quad A\wedge B \Rightarrow \neg (\neg A \vee \neg B) \qquad\Rightarrow I 15,11$
$[]\qquad \quad 17 \quad A\wedge B \Leftrightarrow \neg (\neg A \vee \neg B) \qquad \Leftrightarrow I 9,16$
I am not sure but I think the calculus is from the book: $\textit{Allen, Colin, and Michael Hand. Logic primer. Mit Press, 2001}$.
We are only allowed to use the following rules: Conjunction Introduction/Elimination, Disjunction Introduction/Elimination, Conditional Introduction/Elimination, Bicondintional Introduction/Elimination, and negation introduction and elimination.
– agentnola Nov 16 '17 at 15:02