Let $(Ω,\mathcal F,P)$ be a probability space. Assume that the two sequences $(X_n)_{n\in\Bbb N}$ and $(Y_n)_{n\in\Bbb N}$ are independent. For all $n\in\Bbb{N}$, define $Z_n=X_nY_n$ and $$\mathcal{G}_n=\sigma(X_1,\ldots,X_n)\qquad\mathcal{H}_n=\sigma(Y_1,\ldots,Y_n)\qquad\mathcal{F}_n=\sigma(Z_1,\ldots,Z_n)$$
If $(X_n,\mathcal{G}_n)_{n\in\Bbb N}$ and $(Y_n,\mathcal{H}_n)_{n\in\Bbb N}$ are martingales, is $(Z_n,\mathcal{F}_n)_{n\in\Bbb N}$ still a martingale?
_{...}. – Did Nov 13 '17 at 14:18