Consider the group presentation $$\langle x_e, x_a, x_b, x_{ab}\mid x_ex_a\stackrel{(1)}=x_{ab}, x_ax_e\stackrel{(2)}=x_b, x_bx_{ab}\stackrel{(3)}=x_a, x_{ab}x_b\stackrel{(4)}=x_e\rangle.$$ What group does it define?
So far I have that the group is infinite using the Size function in GAP:
F:=FreeGroup(4);
rels:=[(F.1)*(F.2)*(F.3)^(-1), (F.2)*(F.1)*(F.3)^(-1), (F.3)*(F.4)*(F.2)^(-1), (F.4)*(F.3)*(F.1)^(-1)];
G:=F/rels;
Size(G);
(This code is in error: the first relator should be (F.1)*(F.2)*(F.4)^(-1).)
. I also have that $(1) \,\&\,(4)$ give $x_b=x_a^{-1}$ and $(2) \,\&\,(3)$ give $x_{ab}=x_e^{-1}$. One can obtain $x_e=x_a^{-2}$ by $(2)$.
I think it's simply $\Bbb Z$ but I'm not sure: I have $x_a^{3}=id.$ by $(1)$ and $x_a^2=id.$ by $(2)$, and each of the generators can be written in terms of $x_a$, so the presentation can be transformed into $$\Bbb Z=\langle x_a\rangle.$$
Is this right? Please help :)
rels:=[(F.1)(F.2)(F.3)^(-1), (F.2)(F.1)(F.3)^(-1), (F.3)(F.4)(F.2)^(-1), (F.4)(F.3)(F.1)^(-1)];
G:=F/rels;
Size(G);` in GAP.
– Shaun Nov 07 '17 at 15:00