In general, given any rational expression $\frac{P(z)}{Q(z)}$ with $\det P < \deg Q$. If the roots $\lambda_1,\lambda_2, \ldots \lambda_q$ of $Q(z)$ are all distinct, we have following PFD (partial fractional decomposition):
$$\frac{P(z)}{Q(z)} = \sum_{\ell=1}^q \frac{P(\lambda_\ell)}{Q'(\lambda_\ell)(z-\lambda_\ell)}$$
In particular, we have
$$\frac{1}{\prod_{\ell=1}^q (z-\lambda_\ell)} = \sum_{\ell=1}^q \frac{1}{z-\lambda_\ell}\left(\prod_{j=1,\ne \ell}^q \frac{1}{-\lambda_\ell - \lambda_j}\right)$$
For the rational function at hand, we can read off its PFD as
$$\begin{align}
\frac{1}{n(n+1)\cdots(n+k)}
=& \quad \frac{1}{\color{red}{n}(0+1)\cdots(0+k-1)(0+k)}\\
&+ \frac{1}{(-1)(\color{red}{n+1})\cdots(-1+k-1)(-1+k)}\\
&+ \cdots\\
&+ \frac{1}{(-(k-1))(-(k-1)+1)\cdots(\color{red}{n+k-1})(-(k-1)+k)}\\
&+ \frac{1}{(-k)(-k+1)\cdots(-k+k-1)(\color{red}{n+k})}
\end{align}
$$
Or in more compact notation,
$$
\prod_{\ell=0}^k\frac{1}{n+\ell} =
\sum_{\ell=0}^k \frac{(-1)^\ell}{\ell!(k-\ell)!}\frac{1}{n+\ell}$$
By the way, for the evaluation of the sum,
$$\sum_{n=1}^\infty \frac{1}{n(n+1)\cdots(n+k)}$$
PFD isn't a very effective approach, a simpler way is use the identity
$$\begin{align}\frac{1}{n(n+1)\cdots(n+k)}
&= \frac1k\left[\frac{(n+k)-n}{n(n+1)\cdots(n+k)}\right]\\
&= \frac1k\left[\frac{1}{n(n+1)\cdots(n+k-1)} -
\frac{1}{(n+1)\cdots(n+k)}
\right]
\end{align}$$
to turn the sum into a telescoping one.