Prove by limit definition the following: $$\begin{equation*} \lim_{x \rightarrow -1^{+}} \frac{1}{x^2 - 1}= -\infty \end{equation*}$$
Domain = $\mathbb{R}$ - {-1,+1}, so each neighborhood will contain -1 & +1, what shall I do?
Thanks!
Prove by limit definition the following: $$\begin{equation*} \lim_{x \rightarrow -1^{+}} \frac{1}{x^2 - 1}= -\infty \end{equation*}$$
Domain = $\mathbb{R}$ - {-1,+1}, so each neighborhood will contain -1 & +1, what shall I do?
Thanks!
We wish to show that for every $K\gt0$ there exists a $\delta \gt0$ such that $f(x)=\dfrac{1}{x^2-1}\lt-K$ for every $x \in \mathbb{R-\{-1,1\}}$ with $0\lt|x-(-1)|=|x+1|\lt\delta$.
For $\delta=\dfrac{1}{K(x-1)}$ we have $0\lt|x+1|\lt \dfrac{1}{K(x-1)}\Rightarrow|x+1|(x-1)\lt\dfrac1K$ or equivalently $\dfrac{1}{(x+1)(x-1)}\lt-K$