I would like to speak about the identity that I found on the website of Tito Piezas this is it :
$$\sum_{2^{n-1}}\pm(+ x_1\pm x_2\pm\cdots\pm x_n)^n=n!2^{n-1}x_1\cdots x_n$$
where the exterior sign being the product of the $n$ interior signs . (So the exterior sign is negative if there is an odd number of negative interior signs, and positive if there is an even number.) Examples,
$$(a+b)^2 - (a-b)^2 = 4ab$$
$$(a+b+c)^3 - (a-b+c)^3 - (a+b-c)^3 + (a-b-c)^3 = 24abc$$
$$(a+b+c+d)^4 - (a-b+c+d)^4 - (a+b-c+d)^4 - (a+b+c-d)^4 + (a-b-c+d)^4 + (a-b+c-d)^4 + (a+b-c-d)^4 - (a-b-c-d)^4 = 192abcd$$
My try :
We derivate with respect to $x_1$ we get :
$$\sum_{2^{n-1}}\pm n(\pm x_1\pm x_2\pm\cdots\pm x_n)^{n-1}=n!2^{n-1}x_2\cdots x_n$$ We do the same thing for $x_2,\cdots ,x_{n-1}$ we get :
$$\sum_{2^{n-1}}\pm (\pm x_1\pm x_2\pm\cdots\pm x_n)=2^{n-1} x_n$$
Wich is obvious .
Thanks a lot for your contributions.