Write
$$\frac{u_{n+1}}{u_n} = \frac{\ln(n+1)}{n+1}\times \left(\frac{\ln(n+1)}{\ln n}\right)^n$$
Since $\ln(n+1) = 2\ln \sqrt{n+1} < 2\sqrt{n+1}$, it follows from the squeeze theorem that
$$\lim_{n\to \infty} \frac{\ln(n+1)}{n+1} = 0$$
Now
$$\frac{\ln(n+1)}{\ln n} = 1 + \frac{\ln(n+1) - \ln n}{\ln n} = 1 + \frac{\ln(1 + \frac{1}{n})}{\ln n}$$
so by the binomial theorem,
$$\left(\frac{\ln(n+1)}{\ln n}\right)^n > 1 + n\frac{\ln(1 + \frac{1}{n})}{\ln n} = 1 + \frac{\ln(1 + \frac{1}{n})}{\frac{1}{n}}\frac{1}{\ln n}$$
The limit of $n\dfrac{\ln(1 + \frac{1}{n})}{\ln n}$ is $0$ since $\lim\limits_{n\to \infty} \dfrac{1}{\ln n} = 0$ and $\dfrac{\ln(1 + \frac{1}{n})}{\frac{1}{n}}$ is bounded by $1$. As
$$1 + n\frac{\ln(1 + \frac{1}{n})}{\ln n} < \left(\frac{\ln(n+1)}{\ln n}\right)^n < 1$$
the squeeze theorem yields $\lim\limits_{n\to \infty} \left(\dfrac{\ln(n+1)}{\ln n}\right)^n = 1$. Consequently, $\lim\limits_{n\to \infty} \dfrac{u_{n+1}}{u_n} = 0$.