I have seen a similar question to this asked previously:
Proving $\sum\limits_{k=0}^{n}\cos(kx)=\frac{1}{2}+\frac{\sin(\frac{2n+1}{2}x)}{2\sin(x/2)}$
but I was playing around with the sum
$\sum_{n = 0}^{n = \infty} x^n = \frac{1}{1 - x}$
(for $|x| < 1$)
and I was wondering what would happen if I let $x = ae^{i \theta}$, where $a$ is a constant and $|a| < 1$. Here is my work so far: $\sum_{n = 0}^{n = \infty} (ae^{i \theta})^n = (1 - ae^{i \theta})^{-1}$
$ = \frac{1}{1 - acos(\theta) - i*asin(\theta)}$
$ = \frac{1-acos(\theta) + i*asin(\theta)}{(1 - acos(\theta))^2 + (asin(\theta))^2}$
$= \frac{1-acos(\theta) + i*asin(\theta)}{1 + (acos(\theta))^2 + (asin(\theta))^2 - 2acos(\theta)}$
$ = \frac{1-acos(\theta) + i*asin(\theta)}{2 - 2acos(\theta)} = \frac{1}{2} + i \frac{asin(\theta)}{2(1-acos(\theta))}$
So,
$\sum_{n = 0}^{n = \infty} (ae^{i \theta})^n =\sum_{n = 0}^{n = \infty} a^ne^{i n\theta}$
$ = \sum_{n = 0}^{n = \infty} a^n (cos(n\theta) + isin(n\theta)) = \frac{1}{2} + i \frac{asin(\theta)}{2(1-acos(\theta))}$
But if I equate the real and imaginary parts I get something that doesn't look right:
$\sum_{n = 0}^{n = \infty} a^n cos(n\theta) = \frac{1}{2}$ and $\sum_{n = 0}^{n = \infty} a^n sin(n\theta) = \frac{asin(\theta)}{2(1-acos(\theta))}$
What went wrong here?