In this question $E$ stands for a Hilbert space over $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$, with inner product $\langle\cdot\;| \;\cdot\rangle$ and the norm $\|\cdot\|$ and let $\mathcal{L}(E)$ the algebra of all bounded linear operators from $E$ to $E$. Let ${\bf S}=(S_1,\cdots,S_d) \in \mathcal{L}(E)^d$. I want to know if this two assertions are equivalent?
$(1)$ $\|S_kx_n\|\rightarrow \|S_k\|$, as $n\longrightarrow\infty$, for all $1\leq k \leq d$.
$(2)$ $\left(\displaystyle\sum_{k=1}^d\|S_kx_n\|^2\right)^{1/2}\rightarrow \left(\displaystyle\sum_{k=1}^d\|S_k\|^2\right)^{1/2}$, as $n\longrightarrow\infty$.
Thank you for your help.