Prove that the ideal $I = \left( 3, 2 + \sqrt{-5} \right)$ is a prime ideal in $R = \mathbb{Z}\left[ \sqrt{-5} \right]$.
The book recommends observing that $$ R/I \cong \left( R/(3) \right)/\left( I/(3) \right). $$
My trouble is breaking down the RHS of the isomorphism.
I believe I am trying to reduce it down to what is clearly an integral domain and then I can use the following proposition.
An ideal $P$ is a prime $\iff$ $R/P$ is an integral domain.
How would I go about understanding what the RHS looks like?