Question:
Let $f,g:A\to\mathbb{R}$ bounded in the set $A$. Prove that
a)
$$\underline{\int_A}{f(x) \ dx} + \underline{\int_A}{g(x) \ dx} \le \underline{\int_A}{[f(x) + g(x)] \ dx}\\\le \overline{\int_A}{[f(x) + g(x)] \ dx} \le \overline{\int_A}{f(x) \ dx} + \overline{\int_A}{g(x) \ dx}$$
b) Give an example where all inequalities above are explicit
*
Remember that
$$\underline{\int_A}{f(x) \ dx} = \sup_{P} s(f,P) = \sup_{P} \sum_{B\in P} m_b\cdot vol B$$ $$\overline{\int_A}{f(x) \ dx} = \inf_{P} S(f,P) = \sup_{P} \sum_{B\in P} M_b\cdot vol B$$
where $m_b = \inf \{f(x); x\in B\}$ and $M_b = \sup \{f(x); x \in B\}$
The part $ \underline{\int_A}{[f(x) + g(x)] \ dx}\le \overline{\int_A}{[f(x)+g(x)] \ dx}$ is obvious and comes from the fact that $m\cdot vol A \le s(f,P) \le S(f,P)\le M\cdot vol A$
Now for $\underline{\int_A}{f(x) \ dx} + \underline{\int_A}{g(x) \ dx} \le \underline{\int_A}{[f(x) + g(x)] \ dx}$, lets think:
It's
$$\sup s(f,P) + \sup s(g,P) \le \sup s(f+g, P) = \\ \sup \sum_{B\in P} m_B \cdot vol B + \sup \sum_{B\in P} m_B' \cdot vol B \le \sup \sum_{B\in P} m_B'' \cdot vol B$$
where $m_B = \inf \{f(x), x\in B\}$, $m_B' = \inf \{g(x), x\in B\}$, $m_B'' = \inf \{f(x)+g(x), x\in B\}$. How to proceed here?
For b), I can only find examples for the first or last inequality, not all at the same time. Somebody has an idea?