Here is a more general proof for semigroups that gives a formula for enumerating all such expressions and as a trivial consequence the recursion identity for Catalan numbers - namely for any magma $(S,\cdot)$ as well as maps $f:S^n\to S$ and $g:S^m\to S$ we define $(f\cdot g):S^{n+m}\to S$ such that $\small (f\cdot g)(x_1,\ldots x_{n+m})=f(x_1,\ldots x_n)g(x_{n+1},\ldots x_{(n+m)})$.
While for each $n\in\mathbb{N}$ we define $\pi_n$ to be the set of maps from $S^n$ to $S$ that put parenthesis in-between the $n$ elements of $S$ to indicate the order they should be multiplied in the magma, for example note if:
$h_1(a)=a$
$h_2(a,b)=a\cdot b$
$h_3(a,b,c)=(a\cdot b)\cdot c$
$h_4(a,b,c)=a\cdot(b\cdot c)$
$h_5(a,b,c,d)=(a\cdot b)\cdot (c\cdot d)$
$h_6(a,b,c,d)=a\cdot (b\cdot (c\cdot d))$
$h_7(a,b,c,d)=((a\cdot b)\cdot c)\cdot d$
Then $\pi_1=\{h_1\}$ and $\pi_2=\{h_2\}$ while $\pi_3=\{h_3,h_4\}$ also $\pi_4=\{h_5,h_6,h_7\}$. In fact we prove:
$$\pi_{n}=\bigcup_{k=1}^{n-1}\{f\cdot g:(f,g)\in \pi_k\times \pi_{n-k}\}$$
Since by definition every semigroup expression can be evaluated iteratively until the final operation is a product of two parenthesized terms i.e. that $\small\forall f\in \pi_n\exists (i,j)\in\mathbb{N}^2:i+j=n\land (\phi,\varphi)\in\pi_i\times \pi_j\land f=\phi\cdot \varphi$ thus $\pi_{n}\subseteq\bigcup_{k=1}^{n-1}\{f\cdot g:(f,g)\in \pi_k\times \pi_{n-k}\}$ while for all $i,j\in\mathbb{N}$ with $i+j=n$ if $(f,g)\in\pi_i\times \pi_j$ then $f\cdot g\in \pi_n$ since it is a product of two parenthesized terms - which is itself a parenthesized term, thus we see $\bigcup_{k=1}^{n-1}\{f\cdot g:(f,g)\in \pi_k\times \pi_{n-k}\}\subseteq \pi_n$ which proves $\small\pi_n=\bigcup_{k=1}^{n-1}\{f\cdot g:(f,g)\in \pi_k\times \pi_{n-k}\}$. Lastly if we take $S$ to be the free magma then $\forall i,j\in\mathbb{N}[\pi_i\cap \pi_j=\emptyset\iff i\neq j]$ thus $|\pi_n|=\sum_{k=1}^{n-1}|\pi_k||\pi_{n-k}|$ which gives us Catalan's recursion found here on the cardinality of $\pi_n$ when all parenthesized terms are unique.