Logically and by method 1 the limit should be undefined, but with some juggling it comes out to be $1$.
Method 1. $\displaystyle \lim_{k\to\infty} \int_0^k \sin(x) \, dx = -\lim_{k\to\infty} (\cos(k)-1) = \text{not defined}$.
Method 2. Let $I = \int e^{-tx}\sin(x) \, dx$ and $J=\int e^{-tx}\cos(x) \, dx$. Using integration by parts,
\begin{align*} I &= -e^{-tx}\cos x - tJ, \tag{i} \\ J &= e^{-tx}\sin x + tI \tag{ii} \end{align*}
from $\text{(i)}$ and $\text{(ii)}$,
$$ I = -e^{-tx} \left[ \frac{\cos x + t\sin x}{1+t^2} \right], \qquad J = e^{tx}\left[ \frac{\sin x-t\cos x}{1+t^2} \right]. $$
Thus $\int_0^\infty e^{-tx}\sin(x) \, dx = \frac{1}{1+t^2}$. Taking limit $t \to 0$
$$ \lim_{t\to 0}\int_{0}^{\infty} e^{-tx}\sin(x) \, dx = \int_{0}^{\infty} \sin(x) \, dx = 1. $$
Is the integral $1$ or undefined?
By letting $s\to 0$ we get; $$ \int_0^\infty \sin x dx =1$$
– Guy Fsone Nov 27 '17 at 15:46