In this question $\mathcal{H}$ stands for a Hilbert space over $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$, with inner product $\langle\cdot\;| \;\cdot\rangle$ and the norm $\|\cdot\|$ and let $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators from $\mathcal{H}$ to $\mathcal{H}$.
If ${\bf T} = (T_1,\cdots,T_d)\in\mathcal{B}(\mathcal{H})^d$, then $\omega({\bf T})$ is given by
$$\omega({\bf T}) =\sup\{\bigg(\displaystyle\sum_{k=1}^d|\langle T_kx\;|\;x\rangle|^2\bigg)^{1/2},\;x\in \mathcal{H},\;\|x\|=1\;\}.$$
It is well known that for each $k\in\{1,\cdots,d\}$, we have \begin{eqnarray*} \omega(T_k) &=&\sup\left\{|\langle T_kx\;|\;x\rangle|,\;x\in \mathcal{H},\;\|x\|=1\;\right\}. \end{eqnarray*}
Is $$\omega({\bf T})=\bigg(\displaystyle\sum_{k=1}^d\omega(T_k)^2\bigg)^{1/2}\;??$$