How can I find the upper bound for the number of monic polynomials $F(X) = X^n+a_1X^{n-1}+\ldots+a_n \in \mathbb{F}_p[X]$ such that its discriminant is congruent to $0$ mod $p$, where $p$ is a prime number and $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$? i.e.,
$\sum_{\substack{(a_1,\ldots,a_n) \in \mathbb{F}^n_p \\ \Delta(a_1,\ldots,a_n) \equiv 0 \ \text{mod} \ p}} 1$
where $\Delta(a_1,\ldots,a_n)$ defines the discriminant of $F(X) = X^n+a_1X^{n-1}+\ldots+a_n \in \mathbb{F}_p[X]$