1

Solve the following equation $$2\arccos(x)-\arcsin(2x\sqrt{1-x^2})=0.$$

I tried to solve this equation, but I don't know how can I change $\arcsin$ to $\arccos$ to solve the equation.

Robert Z
  • 147,345

3 Answers3

6

Note that $x\in [-1,1]$. Let $x=\cos(t)$ with $t\in [0,\pi]$ then $\sin(t)\geq 0$ and $$2\arccos(\cos(t))=\arcsin(2\cos(t)\sqrt{1-\cos^2(t)})=\arcsin(2\cos(t)\sin(t))=\arcsin(\sin(2t)).$$ Note for $t\in [0,\pi]$, $\arccos(\cos(t))=t$ and (see HERE) $$\arcsin(\sin(2t))=\begin{cases} 2t &\mbox{if $t\in [0,\pi/4]$}\\ \pi-2t &\mbox {if $t\in [\pi/4,3\pi/4]$}\\ -2\pi+2t &\mbox {if $t\in [3\pi/4,\pi]$} \end{cases}$$ Can you take it from here?

Robert Z
  • 147,345
1

Hmmm what about the following approach ( there is a fair bit of trig )

Take the cosine of both sides to get

$$ \cos\left(\underbrace{2 \cos^{-1}(x)}_{\text{=Part 1}} - \underbrace{\sin^{-1}\left(2x\sqrt{1-x^2}\right)}_{\text{=Part 2}} \right) = 1. \tag{1} \label{eqn:main} $$

Look at each part individually.

$$ \cos(2 \cos^{-1}(x)) = \cos(2\theta), $$ where $\theta \equiv \cos^{-1}(x)$ and hence $x = \cos(\theta)$. Then use the double angle formula

$$\cos(2\theta) = \cos^2 (\theta) - \sin^2(\theta) \\ = 2\cos^2(\theta) - 1. $$

Then using what we have defined above for $\theta$ and $x$ we may deduce that

$$ cos(2 \theta) = 2x^2 -1 .$$

Okay first part done. Second part is similar. We have

$$ \cos\left(\sin^{-1}\left(2x \sqrt{1 - x^2}\right) \right).$$

Let

$$ \sin^{-1}\left(t\right) \equiv \Theta, $$

where $t \equiv2x \sqrt{1 - x^2}.$ Then

$$ \sin^2 (\Theta) = t^2 \Rightarrow 1- \cos^2(\Theta) = t^2,$$

Or in other words

$$ \Theta = \cos^{-1} \left( \sqrt{1 - t^2} \right).$$

Finally, substituting this back in to the original expression

$$\cos\left(\sin^{-1}\left(2x \sqrt{1 - x^2}\right) \right) = \cos\left( \cos^{-1}(\Theta) \right).$$

So the full equation now reads

$$ 2x^2 - 1 - \sqrt{1 - t^2} = 1,$$

which, I believe after substituting in the expression for $t$ results with solution $ x = \pm 1$.

1

Let $\arccos x=t\implies0\le t\le\pi,x=\cos t,\sin t=+\sqrt{1-x^2}$

As $-\dfrac\pi2\le\arcsin(2x\sqrt{1-x^2})\le\dfrac\pi2,$

we have $$-\dfrac\pi2\le2t\le\dfrac\pi2$$

$$\arcsin(2x\sqrt{1-x^2})=\arcsin(\sin2t)$$

$$=\begin{cases} 2t &\mbox{if } -\dfrac\pi2\le2t\le\dfrac\pi2\\ \pi-2t & \mbox{if }-\dfrac\pi2\le\pi-2t\le\dfrac\pi2\iff\dfrac\pi2\le 2t\le\dfrac{3\pi}2 \\2\pi+2t & \mbox{if }-\dfrac\pi2\le2\pi+2t\le\dfrac\pi2\iff ? \\ -2\pi+2t& \mbox{if }-\dfrac\pi2\le-2\pi+2t\le\dfrac\pi2\iff ?\end{cases} $$

But we already have $$-\dfrac\pi2\le2t\le\dfrac\pi2$$