Let $\zeta := e^{\frac{2\pi i}{11}}$ and $p(x) \in \mathbb{F}_{2}[x]$. Do you know of a quick way to determine the multiplicative order of $p(\zeta)$ as an element of $\mathbb{F}_{2}(\zeta)$? I am trying to determine the order of some expressions of that persuasion in Mathematica, but it seems to me that there is not an optimal way to handle roots of unity in Mathematica.
One of the main difficulties I am facing comes from the fact that Mathematica does not reduce neatly the powers of $p(\zeta)$; obviously, if it were capable of doing so, I would only need to check which of the powers $p(\zeta)^k$, with $k\in \{1, 3, 11, 31, 33, 93, 341, 1023\}$, satisfy $(p(\zeta))^{k}=1$. How have you handle these types of issues when they popped up in your studies?
Thanks in advance for your suggestions, comments, and replies.