So I'm working on proving Lagrange's trig identity
$$\sum_{k=0}^n\cos k\theta=\frac{1}{2}+\frac{\sin(2n+1)\frac{\theta}{2}}{2\sin\frac{\theta}{2}}$$
Skipping some steps I arrive here:
$$=\frac{[\cos(n+1)\theta-1][\cos\theta-1]+[\sin(n+1)\theta][\sin\theta]}{[\cos\theta-1]^2+\sin^2\theta}$$
$$=\frac{[\cos(n+1)\theta-1][{\cos\theta-1}]+[\sin(n+1)\theta][\sin\theta]}{-2(\cos\theta-1)}$$
$$\frac{[\cos(n+1)\theta-1]}{-2}+\frac{[\sin(n+1)\theta][\sin\theta]}{-2(\cos\theta-1)}$$
Both my book and other online sources all simply skip the trig manipulation required to finish proving the identity as if it's trivial. I honestly see no way to manipulate any of the above equations to the desired result and am wondering what I'm missing.