0

$\int \frac{dx}{\left(x^2+a^2\right)^3}$. I tried to use partial method were $u\:=\frac{1}{\left(x^2+a^2\right)^3}$ and dv = dx but got no result.

1 Answers1

2

Use the substitution $x=a \tan{t}.$ Then $dx=\frac{a\,dt}{\cos^2{t}}, $ and $$\int \frac{dx}{\left(x^2+a^2\right)^3}=\int \frac{a\,dt}{\cos^2{t}\cdot a^6 \left(1+ \tan^2{t}\right)^3} = \frac{1}{a^5}\int \frac{\cos^6{t}\,dt}{\cos^2{t}}=\frac{1}{a^5}\int {\cos^4{t}\,dt}.$$

M. Strochyk
  • 8,527