Take $x\in(-1,1)$
$$ f(x) =100000+ 100x+ x^2\sin\frac{1}{x} \qquad\text{with $f(0)=100000$}$$
which is differentiable, and
$$ f'(x) = 100+ 2x\sin\frac{1}{x}-\cos\frac{1}{x} \qquad\text{with $f'(0)=100$}$$
$f'$ is not continuous a $x=0$ and you might choose the interval $[a,b]$ around $x=0$ as it suite to you. Indeed
$$ f'(x)=100+2x\sin\frac{1}{x}-\cos\frac{1}{x} \ge 100+ 2x\sin\frac{1}{x}-1$$
Since $|\sin a| \le |a|$ and $-1\le-\cos a\le 1$ then $|2x\sin\frac{1}{x}|\le 2$ i.e $$2x\sin\frac{1}{x}\ge -2 $$
therefore
$$ f'(x)=100+2x\sin\frac{1}{x}-\cos\frac{1}{x} \ge 100-2-1= 97>0$$ for every $x\in \mathbb R$. so $f $ is increasing and $f'$ is not continuous at $x=0$.
Also $|x^2\sin\frac{1}{x}|\le 1$ for all $x\in (-1,1)$ so that
$$f(x) =100000+ 100x+ x^2\sin\frac{1}{x} > 100000-100 -1 >0$$ for every $x\in (-1,1).$