Solution:Let $\mathbb E$ be the splitting field of $x^4+1$ over $\mathbb Q$.Then $x^4+1$ splits into linear factors in $\mathbb E$. $$x^4+1=(x^2-i)(x^2+i)=(x-\sqrt i)(x+\sqrt i)(x-\sqrt {-i})(x+\sqrt {-i})$$
$$=(x-e^{i\pi/4})(x+e^{i\pi/4})(x-e^{i3\pi/4})(x+\ e^{i3\pi/4}).$$
Since $\mathbb E$ is the splitting field of $x^4+1$ over $\mathbb Q$ then $\mathbb E$ is the smallest field containing $\mathbb Q$ and the roots of $x^4+1$. Thus,$$\mathbb E=\mathbb Q(e^{i3\pi/4},-e^{i3\pi/4},e^{i\pi/4},-e^{i3\pi/4}).$$
Since $e^{i3\pi/4}$ can be obtained by taking the cube of $e^{i\pi/4}$ we have $$\mathbb E=\mathbb Q(e^{i\pi/4})=\mathbb Q\left(\frac{1+i}{\sqrt 2}\right).$$
Thus, $$\mathbb E=\mathbb Q\left(\frac{1+i}{\sqrt 2}\right)=\mathbb Q(i,\sqrt 2)=\mathbb Q(\sqrt {-2}).$$
Please check my solution.
Any suggestions are heartly welcome!!
Thank you!!